贝叶斯纳什均衡
纳什均衡(Nash Equilibrium)和子博弈完美纳什均衡(Subgame perfect Nash equilibrium)所反映的博弈都包括了一个基本假设:即博弈的结构、博弈的规则、所有局中人的策略空间和支付函数(payoffs)都是共同知识(common knowledge)。满足这样一个假设的博弈称为“完全信息博弈”(games of complete information)。但在现实生活中这一假设往往得不到满足。在非合作博弈论中,局中人对博弈的结构以及其他局中人的特征并没有准确的知识的情况叫“不完全信息博弈”(games of incomplete information)。
举例在1967年以前,博弈论专家对不完全信息博弈是束手无策的。 Harsanyi(1967—1968)的贡献解决了这个问题,填补了博弈论乃至经济学的一大空白,他也因此而获得了诺贝尔经济奖。John C.Harsanyi引入了一个虚拟的局中人——自然(nature)。与一般的局中人不同,“自然”没有自己的支付和目标函数,即所有结果对它而言是无差异的。自然首先行动,决定局中人的特征。被选择的局中人知道自己的真实特征,而其他局中人并不清楚这个被选择的局中人的真实特征,仅知道各种可能特征的概率分布。另外,被选择的局中人也知道其他局中人心目中的这个分布函数,也就是说,分布函数是一种共同知识(common knowledge)。John C.Harsanyi的这项工作被为“Harsanyi转移”(the Harsanyi transformation),通过这个转换,John C. Harsanyi把“不完全信息博弈”转换成“完全但不完善信息博弈”(complete but imperfect information)。
这里“完全但不完美信息” 指的是,自然作出了它的选择,但其他局中人并不知道它人具体选择是什么,仅知道各种选择的概率分布。这样一来,不完全信息博弈就变得可以进行分析了。在这个基础上,John C.Harsanyi定义了贝叶斯纳什均衡(Bayesian-Nash equilibrium)。
举例说明
某一市场原来被A企业所垄断。现在B企业考虑是否进入。B企业知道,A企业是否允许它进入,取决于A企业阻挠B企业进入所花费的成本。如果阻挠的成本低,A企业的占优战略是阻挠,博弈有重复剔除的占优战略均衡——A阻挠,B不进入。如果阻挠的成本高,A企业的占优战略是默许B进入,博弈有重复剔除的占优战略均衡――A默许,B进入。B企业所不知道的,是A企业的阻挠成本是高是低。这里,某一参与人本人知道、其他参与人则不知道的信息称为私人信息。某一参与人所拥有的全部私人信息称为他的类型。在上述例子中,阻挠成本就是A的私人信息。高阻挠成本和低阻挠成本则是两种不同的类型。
B所遇到的,是不确定性条件下的选择问题。因为B不仅不知道A的类型(是高还是低),而且不知道不同类型的分布概率。
对于挑战者B来说,原垄断者A在阻挠成本方面,存在着两种可能性:高成本或低成本。B不知道A的阻挠成本究竟是高是低,但他知道A在这两种不同阻挠成本下会作出的选择,以及不同阻挠成本(类型)的分布概率。假定高成本的概率为x,则低成本的概率为(1-x)。如果A的阻挠成本高,A将默许B进入市场;如果A的阻挠成本低,A将阻挠B进入市场。在这两种情况下,B进入的支付函数分别是得到40和失去10。因此,B选择进入所得到的期望利润为40x+(-10)(1-x),选择不进入的期望利润为0。简单的计算表明,当A阻挠成本高的概率大于20%时,挑战者B选择进入得到的期望利润大于选择不进入的期望利润。此时,选择进入是B的最优选择。此时的贝叶斯纳什均衡为,挑战者B选择进入,高成本原垄断者选择默许,低成本原垄断者选择阻挠。[1]